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We study the excitable Greenberg-Hastings cellular automaton model on scale-free networks. We obtain
analytical expressions for no external stimulus the uncoupled case. It is found that the curves, the average
activity F versus the external stimulus rate r, can be fitted by a Hill function, but not exactly, there exists a
relation F�r� for the low-stimulus response, where the Stevens-Hill exponent � ranges from �=1 in the
subcritical regime to �=0.5 at criticality. At the critical point, the range is maximal, but not divergent. We also
calculate the average activity Fk�r� and the dynamic range �k�p� for nodes with given connectivity k. It is
interesting that nodes with larger connectivity have larger optimal range, which could be applied in biological
experiments to reveal the network topology.
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Many systems in the real world, either naturally evolved
or artificially designed, are organized in a network fashion
�1�. The most-studied networks are the exponential networks
in which the node degree distribution �the probability P�k�
that a node if connected to other k nodes� is exponentially
bounded. A typical model of this network is the Watts-
Strogatz �WS� graph �2� which exhibits the small-world phe-
nomenon that was observed in realistic networks �3�. On the
contrary, it has been observed recently that the node degree
distributions of many real-world networks have power-law
tails �scale-free property, due to the absence of a character-
istic value for the degrees� P�k��k−� with 2���3 �4�.
There always exists a small number of nodes which are con-
nected to a large number of other nodes in scale-free �SF�
networks. This heterogeneity leads to intriguing properties of
SF networks. A lot of work has been devoted in the literature
to the study of static properties of the networks, while much
interest is growing in the dynamical properties of this kind of
network. In the context of percolation, SF networks are
stable against random removal of nodes while they are frag-
ile under intentional attacks targeting nodes with high degree
�5,6�. Also, there are no epidemic thresholds in SF networks
�7� and no kinetic effects in reaction-diffusion processes tak-
ing place on SF networks �8�.

In this Brief Report, we will study the excitable
Greenberg-Hastings cellular automaton �GHCA� model �9�
on the SF network; especially we focus here on the Barabási
and Albert �BA� graph �4�. Due to experimental data which
suggest that some classes of spiking neurons in the first lay-
ers of sensory systems are electrically coupled via gap junc-
tions or ephaptic interactions �10�, the GHCA model has
been employed to model the response of the sensory network
to external stimuli in some recent work. The two-
dimensional deterministic cellular automaton model was
studied by computer simulations �11�. Analytical results have
recently been obtained for the one-dimensional cellular au-
tomaton model under the two-site mean-field approximation

�12�. In Ref. �13�, Kinouchi and Copelli studied the GHCA
model on an Erdös-Rényi random graph �a kind of exponen-
tial network� with stochastic activity propagation, and they
found as a new and important result that the dynamic range
is maximal at the critical point.

In the n-state GHCA model �9� for excitable systems,
the instantaneous membrane potential of the ith cell �i
=1, . . . ,N� at discrete time t is represented by xi�t�
� �0,1 , . . . ,n−1�, n�3. The state xi�t�=0 denotes a neuron
at its resting �polarized� potential, xi�t�=1 represents a spik-
ing �depolarizing� neuron, and xi�t�=2, . . . ,n−1 accounts for
the afterspike refractory period �hyperpolarization�. There
are two ways for the ith element to go from the state xi�t�
=0 to xi�t+1�=1: �a� due to an external signal, modeled here
by a Poisson process with rate r �which implies a transition
with probability �=1−exp�−r�t� per time step�; �b� with
probability p, due to a neighbor j being in the excited state in
the previous time step. If xi�t��1, then xi�t+1�= �xi�t�+1�
mod n, regardless of the stimulus. Time is discrete. We as-
sume �t=1 ms which corresponds to the approximate dura-
tion of a spike and is the time scale adopted for the time step
of the model. The number of states n therefore controls the
duration of the refractory period �which corresponds to n
−2, in ms�. In the biological context, r could be related, for
example, to the concentration of a given odorant presented to
an olfactory epithelium �14�, or the light intensity stimulating
a retina �10�. We shall refer to r as the stimulus rate or
intensity.

The BA graph is a kind of SF network and can be con-
structed according to Ref. �4�. Starting from a small number
m0 of nodes, every time step a new vertex is added, with m
links that are connected to an old node i with a probability
that is proportional to node i’s degree. After iterating this
scheme a sufficient number of times, we obtain a network
composed of N nodes with degree distribution P�k��k−3 and
average degree �k	=2m. In this Brief Report, we build BA
graph with size N=104 and m0=m=4.

Let 	t�s� be the densities of neurons which are in state s at
time t. We have the normalization condition 
s=0

n−1	t�s�=1.
Since the dynamics of the refractory state is deterministic,
the equations for s�2 are simply
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	t+1�2� = 	t�1� ,

	t+1�3� = 	t�2� ,

�

	t+1�n − 1� = 	t�n − 2� . �1�

By imposing the stationarity condition, we have

	t�0� = 1 − �n − 1�	t�1� . �2�

Following ideas developed by Pastor-Satorras et al. �7�, to
take into account strong fluctuations in the connectivity dis-
tribution, we consider the relative density 	t

k�1� of active
nodes with given connectivity k by the following equation:

�t	t
k�1� = − 	t

k�1� + �	t
k�0� + kp�1 − ��	t

k�0�
„	t�1�… ,

�3�

where 
(	t�1�) is the probability that any given link points
to an active node and is assumed to be a function of the total
density of exciting nodes 	t�1�. In the steady state, 	t�1� is
just a function of � and p. Thus, the probability 
 becomes
an implicit function of � and p. By imposing the stationarity
condition �t	t

k�1�=0, we obtain

	k�1� =
� + �1 − ��pk
��,p�

1 + �n − 1��� + �1 − ��pk
��,p��
. �4�

This set of equations shows that the higher the node connec-
tivity, the higher the probability to be in a spiking state. This
inhomogeneity must be taken into account in the computa-
tion of 
�� , p�. Indeed, the probability that a link points to a
node with q links is proportional to qP�q�. In other words, a
randomly chosen link is more likely to be connected to an
exciting node with high connectivity, yielding the relation


��,p� = 

k

kP�k�	k�1�



q

qP�q�
. �5�

Since 	k�1� is in its turn a function of 
�� , p�, we obtain a
self-consistency equation that allows us to find 
�� , p� and
an explicit form for Eq. �4�. Finally, we can evaluate the
order parameter �persistence� 	�1� using the relation

	�1� = 

k

P�k�	k�1� . �6�

For the BA graph, the full connectivity distribution is given
by P�k�=2m2k−3, where m is the minimum number of con-
nection at each node. By noticing that the average degree is
�k	=�m

�kP�k�dk=2m, Eq. �5� gives


��,p� = m

m

� dk

k2

� + �1 − ��pk
��,p�
1 + �n − 1��� + �1 − ��pk
��,p��

,

�7�

which yields the solution


��,p� =
�

b
+ ��

b
−

1

n − 1
�ma
��,p�

b
ln

ma
��,p�
ma
��,p� + b

,

�8�

where a= �n−1��1−��p and b=1+ �n−1��. We can solve the
above equation to obtain the solution 
�� , p�. Theoretically,
combining Eqs. �4�, �6�, and �8�, we can obtain the final
result of 	�1�. In some special cases the analytical expres-
sions can be obtained.

�i� No external stimulus, i.e., �=0 or r=0. We can obtain


�0,p� =
e−1/mp

�n − 1�mp
�1 − e−1/mp�−1. �9�

Combining Eqs. �4�, �6�, and �9�, we find the solution for the
density of active nodes when there is no external stimulus,

	�1� �
1

n − 1
e−1/mp. �10�

�ii� The uncoupled case, i.e., p=0. Combining Eqs. �4�
and �6�, we have

	�1� =
�

1 + �n − 1��
, �11�

which is independent of the network’s topology, so it has
also been obtained in other networks, such as the one-
dimensional case �12�. When the external stimulus intensity r
is very small, 	�1��r−1.

We define the average activity

F =
1

T


t=1

T

	t�1� , �12�

where T is a large time window �of the order of 104 time
steps�. In the stationary state, it is obvious that F=	�1�. To
confirm the picture extracted from the above analytic treat-
ment, we perform numerical simulations on the BA network.
Figure 1 shows the behavior of the average activity F in the
absence of stimulus. All the plots decay with an exponent

FIG. 1. �Color online� In the absence of stimulus, the average
activity F as a function of 1/ p. The linear behavior on the semi-
logarithmic scale proves the exponential behavior predicted by Eq.
�10�.
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form F�exp�−c /mp�, where c is a constant. The numerical
value obtained, c=0.226, is in good agreement with the the-
oretical prediction of Eq. �10�, c=1/m=0.25.

In Fig. 2, we show the average activity F versus the ex-
ternal stimulus rate r for different branching probability p.
The inset shows the spontaneous activity F0 versus the
branching probability p in the absence of stimulus �r=0�.
There is a critical point pc=0.06; only at p� pc is there a
self-sustained activity, F�0. We perform numerical simula-
tions on BA graphs with different system sizes and find that
the value of pc reduces to zero as the system size N in-
creases. The curves F�r� could be fitted by a Hill function
F�r�=Fmaxr

� / �c�+r��, where c is the stimulus rate for half
maximum response, but are not exactly Hill functions, and
there exists the relation F�r� for the low-stimulus response.
It is found that the Stevens-Hill exponent � changes from
�=1 in the subcritical regime to �=0.5 at criticality. This
important point was also reported by Ref. �13� where the
network is an Erdös-Rényi random graph. We also notice
that apparent exponents between 0.5 and 1.0 are observed
�12� if finite size effects are present, that is, if N is small.

As a function of the stimulus intensity r, networks have a
minimum response F0 �=0 for the subcritical and critical
cases� and a maximum response Fmax �due to the absolute
nature of the refractory period, Fmax=1/n, which can be ob-
tained by setting �=1 in Eq. �11��. Reference �13� defines the
dynamic range �=10 log10�r0.9 /r0.1� as the stimulus interval
�measured in decibels� where variations in r can be robustly
coded by variations in F, discarding stimuli that are too weak
to be distinguished from F0 or too close to saturation. The
range �r0.1 ,r0.9� is found from its corresponding response in-
terval �F0.1 ,F0.9�, where Fx=F0+x�Fmax−F0�.

Figure 3 depicts the dynamic range � versus the branch-
ing probability p. There is a pronounced finite maximum
precisely at the critical point. This result was also found in an
Erdös-Rényi random graph �13�. Kinouchi and Copelli ex-
plained the result as follows: “In the subcritical regime, sen-

sitivity is enlarged because weak stimuli are amplified due to
activity propagation among neighbors. As a result, the dy-
namic range ��p� increases monotonically with p. In the
supercritical regime, the spontaneous activity F0 masks the
presence of weak stimuli, therefore ��p� decreases. The op-
timal regime occurs precisely at the critical point” �13�. We
also perform simulations on other complex networks, such as
WS networks and random SF networks with different � �15�,
and obtain the same behavior of the average activity F as
shown in Fig. 2, the optimal regime occurring precisely at
the critical point. We state that this phenomenon represents a
universal behavior of the excitable GHCA model on complex
networks and the explanation provided by Kinouchi and
Copelli is also suitable for other types of complex networks.
Furthermore, we perform computer simulations on SF net-
works with average degree �k	=8 and degree exponent �
=2.2,2.5,3.5, and obtain that their optimal dynamic ranges
are approximately 19.21, 20.01, 21.54, respectively, which
means that the more heterogeneous the SF network is, the
smaller optimal dynamic range it has.

In SF networks, there exist strong fluctuations in the con-
nectivity distribution. It is worth investigating the behavior
of the average activity Fk for nodes with given connectivity
k. In Fig. 4 we plot the quantity Fk versus the external stimu-
lus intensity r for different branching probability p. Figures
4�a� and 4�b� correspond to the node connectivity k=4 and
36, respectively. It is found that the curves Fk�r� have similar
properties as F�r� which was shown in Fig. 2, i.e., the
Stevens-Hill exponent � changes from �=1 in the subcritical
regime to �=0.5 at criticality.

Finally, we calculate the dynamic range �k�p� of nodes
with given connectivity k, and the result is shown in Fig. 5.
The phenomenon that the optimal regime occurs precisely at
the critical point recurs. It is notable that the optimal dy-
namic range for nodes with given connectivity k increases
with k, i.e., nodes with larger connectivity have larger opti-
mal range. One can investigate every node’s optimal dy-
namic range and calculate their fluctuations, since the fluc-
tuations of the node’s optimal dynamic range reflect the
fluctuations of the node’s connectivity in the network. To

FIG. 2. �Color online� Response curves �mean firing rate F vs
stimulus rate r�. Points represent simulation results with n=5 states
and T=103 ms, from p=0 to 0.12 �in intervals of 0.02�. These
curves are power laws F
r� with �=1 �subcritical� and 1/2 �criti-
cal�. Inset: Spontaneous activity F0 vs branching probability p; the
critical point is pc=0.06.

FIG. 3. Dynamic range � vs branching probability p. The curve
is obtained by calculating the data from Fig. 2. There is a finite
maximal range precisely at the critical point pc=0.06.
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some extent, we can discover the topology of the network by
investigating the dynamics on it.

In summary, we have investigated the behavior of the ex-
citable GHCA model �9� on BA networks. It was found that
the curves of the average activity F as a function of the
external stimulus rate r can be fitted by a Hill function, but
are not exactly Hill functions, and there exists a relation F
�r� for the low-stimulus response. The Stevens-Hill expo-
nent � changes from �=1 in the subcritical regime to �
=0.5 at criticality. There is a maximal range precisely at the
critical point. We also observed these results numerically in
other kinds of complex networks. We conclude that these
phenomena represent a universal behavior of the excitable
GHCA model on complex networks. Due to strong fluctua-

tions in the connectivity distribution on the BA graph, we
calculated the average activity Fk�r� and the dynamic range
�k�p� for nodes with given connectivity k. The two quantities
Fk�r� and �k�p� have similar behavior to that of F�r� and
��p�, respectively. It is interesting that nodes with larger
connectivity have larger optimal range. This property could
be applied in biological experiments, revealing the network
topology.
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FIG. 4. �Color online� Average activity Fk for nodes with given
connectivity k vs external stimulus rate r; for connectivity k= �a� 4
and �b� 36. Simulations are performed with n=5 states and T
=104 ms, from p=0 to 0.12 �in intervals of 0.02�. These curves are
power laws Fk
r� with �=1 �subcritical� and 1/2 �critical�.

FIG. 5. �Color online� Dynamic range �k�p� of nodes with given
connectivity k vs branching probability p. Points represent the re-
sults calculated from simulation with n=5 states and T=104 ms.
Dynamic range �k�p� is optimized at the critical point pc=0.06,
although the connectivity k is different.
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